Name:

MGF 1107 Section 0057 Quiz 4

Please show all of your work in a NEAT and ORGANIZED fashion.

1. (4 points) Prove that the Euclidean metric is indeed a metric, where the Euclidean metric d measures the distance between $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ as follows:

$$
d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}
$$

2. (3 points) Each of the following functions fails exactly one of the required properties of metrics (and therefore are not metrics). Identify the property each function fails, and explain your answer.
(a) $d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=0$ for any points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$
(b) $d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left\{\begin{array}{lll}0 & \text { if } & \left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right) \\ 1 & \text { if } & x_{1}-x_{2}>0 \\ 2 & \text { if } & x_{1}-x_{2}<0\end{array}\right.$
(c) $d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)= \begin{cases}0 \text { if } & \left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right) \\ -1 \text { if } & \left(x_{1}, y_{1}\right) \neq\left(x_{2}, y_{2}\right)\end{cases}$
3. (4 points) Prove the following proposition. Carefully justify each step of your proof.

Suppose l and m are two parallel lines. Prove that there exists a point which does not lie on either of the lines.

Hint: Begin the proof by constructing a line that intersects both l and m.
4. (4 points) Prove the following proposition. Carefully justify each step of your proof.

Suppose the ray $\overrightarrow{A D}$ is between rays $\overrightarrow{A B}$ and $\overrightarrow{A C}$, and the ray $\overrightarrow{A E}$ is between rays $\overrightarrow{A B}$ and $\overrightarrow{A D}$. Show that $\mu(\angle B A C)=\mu(\angle D A C)+\mu(\angle E A D)+\mu(\angle B A E)$.
Hint: Draw a picture!

