MATH 146 Test 2 Study Guide

Indeterminate Forms

- L'Hôpital's Rule: Applies to the indeterminate forms $\frac{0}{0}$ and $\frac{\infty}{\infty}$
- Products: $0 \cdot \infty$
- Rewrite the product as a quotient
- Differences: $\infty-\infty$
- Rewrite the difference as a single fraction
- Powers: $0^{0}, \infty^{0}, 1^{\infty}$
- Take In of the limit; remember to exponentiate at the end

Improper Integrals

- "Horizontal infinity" (take the limit as t approaches the "problem point")

1. $\int_{a}^{\infty} f(x) d x=\lim _{t \rightarrow \infty} \int_{a}^{t} f(x) d x$
2. $\int_{-\infty}^{b} f(x) d x=\lim _{t \rightarrow-\infty} \int_{t}^{b} f(x) d x$
3. $\int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{a} f(x) d x+\int_{a}^{\infty} f(x) d x$; evaluate each integral on the right hand side as in (1) and (2)

- "Vertical infinity" (take the limit as t approaches the "problem point")

1. Discontinuous at $a: \int_{a}^{b} f(x) d x=\lim _{t \rightarrow a^{+}} \int_{t}^{b} f(x) d x$
2. Discontinuous at $b: \int_{a}^{b} f(x) d x=\lim _{t \rightarrow b^{-}} \int_{a}^{t} f(x) d x$
3. Discontinuous at $a<c<b: \int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$; evaluate each integral on the right hand side as in (1) and (2)

Sequences

- An infinite list of numbers: $\left\{a_{n}\right\}_{n=1}^{\infty}=a_{1}, a_{2}, a_{3}, \ldots$
- Convergence (finding $\lim _{n \rightarrow \infty} a_{n}$)
- Divide top and bottom by power of n
- Use related function and L'Hôpital's
- Cancel factorials
- Monotonicity and Boundedness
- Use derivative of the related function
- The bounds you choose do not have to be the "best" bounds, just "safe" bounds
- Geometric sequence: $\left\{a r^{n}\right\}_{n=0}^{\infty}=a, a r, a r^{2}, \ldots$
- Converges to 0 if $-1<r<1$
- Converges to a if $r=1$
- Diverges otherwise

Series

- An infinite sum of numbers: $\sum_{n=1}^{\infty} a_{n}=a_{1}+a_{2}+a_{3}+\cdots$
- Convergence is determined by the limit of the partial sums s_{n}
- Geometric series: $\sum_{n=0}^{\infty} a r^{n}$ converges only if $-1<r<1$, in which case $\sum_{n=0}^{\infty} a r^{n}=\frac{1 \text { st term }}{1-\text { ratio }}$
- \boldsymbol{p}-series: $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converges if $p>1$, diverges if $p \leq 1$
- Telescoping series: Partial sums s_{n} collapse; take limit of partial sums to determine convergence

Series Tests

- Test for Divergence: If $\lim _{n \rightarrow \infty} a_{n}$ DNE or $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then the series $\sum_{n=1}^{\infty} a_{n}$ diverges.
- Integral Test: Suppose f is continuous, positive, and decreasing, and let $a_{n}=f(n)$. Then
- If $\int_{1}^{\infty} f(x) d x$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges.
- If $\int_{1}^{\infty} f(x) d x$ diverges, then $\sum_{n=1}^{\infty} a_{n}$ diverges.
- Comparison Test: Suppose that $\sum a_{n}$ and $\sum b_{n}$ are series with positive terms.
- If $\sum b_{n}$ converges and $a_{n} \leq b_{n}$ for all n, then $\sum a_{n}$ also converges.
- If $\sum b_{n}$ diverges and $a_{n} \geq b_{n}$ for all n, then $\sum a_{n}$ also diverges.
- Limit Comparison Test: Suppose that $\sum a_{n}$ and $\sum b_{n}$ are series with positive terms. If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c$, where c is finite and $c \neq 0$, then either both series converge or both series diverge.
- Alternating Series Test: If the alternating series $\sum_{n=1}^{\infty}(-1)^{n-1} b_{n} \quad\left(b_{n}>0\right)$ satisfies $b_{n+1} \leq b_{n}$ and $\lim _{n \rightarrow \infty} b_{n}=0$, then the series converges.
- If $\sum_{n=1}^{\infty}(-1)^{n-1} b_{n}$ converges, then the following gives an estimate of error for the nth partial sum $s_{n}:\left|E_{n}\right| \leq b_{n+1}$.
- Absolute Convergence: A series $\sum a_{n}$ converges absolutely if the series of absolute values $\sum\left|a_{n}\right|$ converges.
- A series $\sum a_{n}$ converges conditionally if it converges, but does not converge absolutely.
- Ratio Test: Let $L=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|$.
- If $L<1$, then the series $\sum_{n=1}^{\infty} a_{n}$ converges (absolutely).
- If $L>1$, then the series $\sum_{n=1}^{\infty} a_{n}$ diverges.
- If $L=1$, no conclusion can be drawn.
- Root Test: Let $L=\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}$.
- If $L<1$, then the series $\sum_{n=1}^{\infty} a_{n}$ converges (absolutely).
- If $L>1$, then the series $\sum_{n=1}^{\infty} a_{n}$ diverges.
- If $L=1$, no conclusion can be drawn.

