MATH 146 Test 2 Study Guide

Indeterminate Forms

- L'Hôpital's Rule: Applies to the indeterminate forms $\frac{0}{0}$ and $\frac{\infty}{\infty}$
- Products: 0 · ∞
 - Rewrite the product as a quotient
- Differences: $\infty \infty$
 - Rewrite the difference as a single fraction
- Powers: $0^0, \infty^0, 1^\infty$
 - Take In of the limit; remember to exponentiate at the end

Improper Integrals

- "Horizontal infinity" (take the limit as t approaches the "problem point")
 - 1. $\int_{a}^{\infty} f(x) dx = \lim_{t \to \infty} \int_{a}^{t} f(x) dx$

 - 2. $\int_{-\infty}^{b} f(x)dx = \lim_{t \to -\infty} \int_{t}^{b} f(x)dx$ 3. $\int_{-\infty}^{\infty} f(x)dx = \int_{-\infty}^{a} f(x)dx + \int_{a}^{\infty} f(x)dx; \text{ evaluate each integral on the}$ right hand side as in (1) and (2)
- "Vertical infinity" (take the limit as t approaches the "problem point")
 - 1. Discontinuous at $a: \int_a^b f(x) dx = \lim_{t \to a^+} \int_t^b f(x) dx$
 - 2. Discontinuous at $b: \int_a^b f(x) dx = \lim_{t \to b^-} \int_a^t f(x) dx$
 - 3. Discontinuous at a < c < b: $\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx$; evaluate each integral on the right hand side as in (1) and (2)

Sequences

- An infinite list of numbers: $\{a_n\}_{n=1}^{\infty} = a_1, a_2, a_3, \dots$
- Convergence (finding $\lim_{n\to\infty} a_n$)
 - Divide top and bottom by power of n
 - Use related function and L'Hôpital's
 - Cancel factorials
- Monotonicity and Boundedness
 - Use derivative of the related function
 - The bounds you choose do not have to be the "best" bounds, just "safe" bounds
- Geometric sequence: $\{ar^n\}_{n=0}^{\infty} = a, ar, ar^2, ...$
 - Converges to 0 if -1 < r < 1
 - Converges to a if r = 1
 - Diverges otherwise

Series

- An infinite sum of numbers: $\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \cdots$
- Convergence is determined by the limit of the partial sums s_n
- Geometric series: $\sum_{n=0}^{\infty} ar^n$ converges only if -1 < r < 1, in which case $\sum_{n=0}^{\infty} ar^n = \frac{1st \ term}{1-ratio}$
- **p-series:** $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if p > 1, diverges if $p \le 1$
- **Telescoping series:** Partial sums s_n collapse; take limit of partial sums to determine convergence

Series Tests

- Test for Divergence: If $\lim_{n\to\infty} a_n$ DNE or $\lim_{n\to\infty} a_n \neq 0$, then the series $\sum_{n=1}^{\infty} a_n$ diverges.
- Integral Test: Suppose f is continuous, positive, and decreasing, and let $a_n = f(n)$. Then
 - If $\int_{1}^{\infty} f(x) dx$ converges, then $\sum_{n=1}^{\infty} a_n$ converges.
 - If $\int_{1}^{\infty} f(x) dx$ diverges, then $\sum_{n=1}^{\infty} a_n$ diverges.
- **Comparison Test:** Suppose that $\sum a_n$ and $\sum b_n$ are series with positive terms.
 - If $\sum b_n$ converges and $a_n \leq b_n$ for all n, then $\sum a_n$ also converges.
 - If $\sum b_n$ diverges and $a_n \ge b_n$ for all n, then $\sum a_n$ also diverges.
- Limit Comparison Test: Suppose that $\sum a_n$ and $\sum b_n$ are series with positive terms. If $\lim_{n\to\infty} \frac{a_n}{b_n} = c$, where c is finite and $c \neq 0$, then either both series converge or both series diverge.
- Alternating Series Test: If the alternating series $\sum_{n=1}^{\infty} (-1)^{n-1} b_n$ $(b_n > 0)$ satisfies $b_{n+1} \le b_n$ and $\lim_{n \to \infty} b_n = 0$, then the series converges.
 - If $\sum_{n=1}^{\infty} (-1)^{n-1} b_n$ converges, then the following gives an estimate of error for the *n*th partial sum s_n : $|E_n| \leq b_{n+1}$.
- Absolute Convergence: A series $\sum a_n$ converges <u>absolutely</u> if the series of absolute values $\sum |a_n|$ converges.
 - A series $\sum a_n$ converges <u>conditionally</u> if it converges, but does not converge absolutely.
- **Ratio Test:** Let $L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$.
 - If L < 1, then the series $\sum_{n=1}^{\infty} a_n$ converges (absolutely). If L > 1, then the series $\sum_{n=1}^{\infty} a_n$ diverges.

 - o If L = 1, no conclusion can be drawn.
- **Root Test:** Let $L = \lim_{n \to \infty} \sqrt[n]{|a_n|}$.
 - If L < 1, then the series $\sum_{n=1}^{\infty} a_n$ converges (absolutely).
 - If L > 1, then the series $\sum_{n=1}^{\infty} a_n$ diverges.
 - \circ If L = 1, no conclusion can be drawn.