MATH 110 Summer 2019
 Test 2 Practice Problems
 (This is NOT a comprehensive review!!!)

Notation/Formulas:

1. Find the cardinality of the following set.

$$
\{2,4,6,8,10, \ldots, 126\}
$$

2. Let $U=\{1,2,3,4,5,6,7,8,9,10\}, A=\{2,5,7,9\}, B=\{1,2,3\}$, and $C=\{5,8,9,10\}$.
a. Find $\left(A^{\prime} \cup B\right) \cap C$.
b. Determine whether the statement is true or false: $C \subseteq B^{\prime}$
3. A Mazda Miata features 10 different upgrade options; you can choose to add any of these when you purchase the car.
a. How many different versions of Miatas can you buy?
b. What is the minimum number of upgrade options which must be available if the Mazda dealership advertises that it offers over 5,000 versions of Miatas?
4. Draw a Venn diagram to show the set.
$(A \cup B) \cap C^{\prime}$
5. Use the given information to find the number of elements in each region.

$$
n(A)=24, n(B)=36, n(A \cap B)=8, n(U)=100
$$

6. In a survey of 1,000 people, it was reported that 670 people liked McDonald's, 750 people liked Chick-fil-A, and 45 people liked neither restaurant.
a. How many people liked both McDonald's and Chick-fil-A?
b. How many people liked only Chick-fil-A?
7. Write the sentence in symbolic form. Use the following:
p : I eat too much.
q : I order food.
r : I will feel well.

If I order food and eat too much, then I will not feel well.
8. Determine the truth value of the compound statement, given that p is false, q is true, and r is false.

$$
(\sim p \vee q) \wedge(p \wedge \sim r)
$$

9. Construct a truth table for the compound statement.

$$
(p \rightarrow \sim q) \vee(p \wedge q)
$$

p	q	$(p$	\rightarrow	$\sim q)$	\vee	$(p$	\wedge	$q)$
T	T							
T	F							
F	T							
F	F							

10. Determine the truth value of the given statement.
a. If Tuscaloosa is the capital of Alabama, then penguins can fly.
b. $3=6$ if and only if $-1<1$.
