12.2 - Permutations and Combinations

We will continue to learn about methods of counting, using the permutations and combinations formulas.

Motivation

- Suppose 4 different colored sheets of paper are arranged in a row. How many different ways are there to order the colors?

$4^{\text {colos }}$

Factorials
Def: $n!=n \cdot(n-1) \cdot(n-2) \cdot \ldots \cdot 3 \cdot 2 \cdot 1$
"n factorial"
keep subtracting until you reach I

$$
\text { Ex: } \begin{aligned}
6! & =6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=720 \\
1! & =1 \\
0! & =1 \quad \text { (definition) }
\end{aligned}
$$

Permutations * Order
Def: A permutation is an arrangement of objects in a definite order.

Example 1

- 8 runners compete in an Olympic race. In how many ways can the gold, silver, and bronze medals be awarded? $\quad P(8,3)$

$$
\frac{8}{\text { gold }} \cdot \frac{7}{\text { silver }} \cdot \frac{6}{\text { bronze }}=336
$$

Permutations Formula

- The number of permutations of n objects chosen k at a time is

$$
P(n, k)=\frac{n!}{(n-k)!} \rightarrow \text { lefovers }
$$

Note: $P(n, 0)=\frac{n!}{(n-0)!}=\frac{n!}{n!}=1$

Example 2

- A committee of 16 students must select a president, vice president, secretary, and treasurer. In how many ways can this be accomplished?

$$
\begin{aligned}
& \text { accomplished? } \\
& \frac{16}{P} \cdot \frac{15}{V P} \cdot \frac{14}{\mathrm{~S}} \cdot \frac{13}{T}=43,680 \\
& \text { OR }
\end{aligned}
$$

$$
P(16,4)=\frac{16!}{(16-4)!}=\frac{16!}{12!}=\frac{16 \cdot 15 \cdot 14 \cdot 13 \cdot 12!}{12!}
$$

Combinations *order does not

- Def: A combination is a collection of objects whose order is not important.

Example 3

- You put 4 toppings on a pizza and you have 16 toppings to choose from. How many pizzas are possible? \longrightarrow combinations

1. The number of permutations is: $P(16,4)=43,680$
2. This is an overcount! (The order of toppings does not matter.) How many ways can 4 toppings be arranged? $4 \cdot 3 \cdot 2 \cdot 1=24$ 3. Divide to correct for the overcount: 43,680 24

Combinations Formula

- The number of combinations of n objects chosen k at a time is

$$
C(n, k)=\frac{\not / 4 \text { of permutations }}{\not / \text { of arrangements }}=
$$

Note: $C(n, 0)=1$

Example 4
(a) A committee of 6 people is chosen from a group of 12 . How many committees are possible? \longrightarrow combinations

$$
\begin{aligned}
& c(12,6)=\frac{P(12,6)}{6!}=\frac{12 \cdot \underline{11} \cdot 10 \cdot 9 \cdot 8 \cdot \underline{7}}{6 \cdot 5 \cdot \underline{4} \cdot \underline{3} \cdot 2 \cdot 1}=924 \\
& O R
\end{aligned}
$$

Example 4
(b) A committee of 6 people is chosen from 8 men and 4 women. How many committees are possible that consist of 3 men and 3
women? Multistage experiment: use the counting principle

$$
\begin{aligned}
\frac{c(8,3)}{M} \cdot \frac{c(4,3)}{W} & =56 \cdot 4 \\
& =224
\end{aligned}
$$

Example 4
(c) 4 cards are randomly chosen from a standard deck of playing cards. How many hands contain exactly 2 queens and 1 king?, $52-4-4=44$
cards are NOT
counting principle: $\frac{c(4,2)}{2 Q_{s}} \cdot \frac{c(4,1)}{1 K} \cdot \frac{C(44,1)}{1 \text { other }}$ cards or K

$$
\begin{aligned}
& =6 \cdot 4 \cdot 44 \\
& =1,056
\end{aligned}
$$

