Section \# \qquad Name \qquad
UF ID \# \qquad Signature \qquad

1. Identify the key numbers of the inequality.

$$
\frac{2}{x-4}-\frac{1}{x+1} \geq 0
$$

A. $-1,4$
B. $-1,4,9$
C. $-6,-1,4$
D. $-1,2,4$
2. Solve the inequality and write the solution set in interval notation.

$$
|3 x-4|-4>-1
$$

A. $\left(\frac{7}{3}, \infty\right)$
B. $(-\infty, \infty)$
C. $\left(-\infty, \frac{1}{3}\right) \cup\left(\frac{7}{3}, \infty\right)$
D. $\left(\frac{1}{3}, \frac{7}{3}\right)$
3. If the point (a, b) is in quadrant III, in which quadrant is $(a,-b)$?
A. I
B. II
C. III
D. IV
4. Find the distance between the points $(0,-3)$ and $(2,5)$. Simplify your answer completely.
A. $2 \sqrt{17}$
B. $2 \sqrt{2}$
C. $\sqrt{8}$
D. $4 \sqrt{17}$
5. Which of the following relations defines a function?
A. $y= \pm x^{3}$
B. $y^{2}+5=x$
C. $\{(-4,2),(-2,2),(0,2),(2,2)\}$
D. $\{(-3,1),(-2,5),(-2,6),(3,7)\}$
6. Give the domain and range of the following relation.

$$
y=\sqrt{x-7}
$$

A. domain: $(-\infty, \infty)$, range: $(-\infty, \infty)$
B. domain: $(-\infty, \infty)$, range: $[7, \infty)$
C. domain: $[0, \infty)$, range: $[0, \infty)$
D. domain: $[7, \infty)$, range: $[0, \infty)$
7. Let $f(x)=-x^{2}+5 x$. Find and simplify $f(x-2)$.
A. $-x^{2}+5 x-6$
B. $x^{2}+x-6$
C. $-x^{2}+9 x-14$
D. $-x^{2}+5 x-2$
8. Find the slope of the line satisfying the following conditions and write the equation of the line: \quad vertical through $(3,1)$
A. slope is undefined; $x=3$
C. \quad slope $=0 ; y=1$
B. slope $=0 ; x=3$
D. slope is undefined; $y=1$
9. Write an equation of the line through $\left(\frac{1}{2},-4\right)$ having slope -10 . Give the answer in standard form.
A. $y+4=-10\left(x-\frac{1}{2}\right)$
B. $20 x+2 y=-79$
C. $10 x+y=-9$
D. $10 x+y=1$
10. Write an equation of the line passing through $(4,6)$ and $(-1,21)$. Give the answer in slope-intercept form.
A. $3 x+y=18$
B. $y=-3 x+22$
C. $y=-\frac{1}{3} x+\frac{22}{3}$
D. $y=-3 x+18$

Section \# \qquad
UF ID \# \qquad

Name \qquad
Signature \qquad

YOU MUST SHOW ALL WORK TO RECEIVE FULL CREDIT.

1. (6 points) Identify each statement as true or false. (Just write true or false beside each statement.)
(a) The key numbers corresponding to $\frac{9}{x^{2}-3 x+2}$ are 0,1 , and 2 .
(b) The solution set of the inequality $\left|x^{2}-6 x-7\right| \leq-14$ is $(-\infty, \infty)$.
(c) The point $(8,-16)$ is in quadrant IV.
(d) The y-intercept of the graph of $y=\frac{1}{2} x+2$ is $(0,2)$.
(e) The graph of a linear function is a line.
(f) $\{(1,0),(2,0),(3,0)\}$ is not a function because 0 has more than one corresponding input.
2. (5 points) Solve the inequality and write the solution set in interval notation.

$$
\frac{1}{x+6} \geq-\frac{1}{x-2}
$$

3. (4 points) For the equation $y=-x^{2}-1$, complete the table with 5 ordered pairs that are solutions of the equation, and then graph the equation.

4. (4 points) Write an equation of the line passing through $(-1,4)$ and $(-3,3)$ and write the result in slope-intercept form. Graph the line.

5. (a) (3 points) Determine whether the following relation defines a function (JUSTIFY your answer), and give the domain and range.

(b) (3 points) Determine whether the following relation defines a function (JUSTIFY your answer), and give the domain and range.

