MAC 1114 - Spring 2018 - EXAM 3

Section #	Name
UF ID #	Signature

Questions 1 and 2 refer to the following scenario: A 10-foot long ladder is leaning against a house so that the bottom of the ladder is 2 feet away from the house.

- 1. How high is the top of the ladder?
 - A.
 $2\sqrt{26}$ feet
 C.
 96 feet

 B.
 104 feet
 D.
 $4\sqrt{6}$ feet
- 2. Which of the following is the angle of elevation of the ladder?

- 3. Which of the following is NOT a trigonometric identity?
 - A. $\sin(-x) = -\sin x$ B. $\sec^2 x + \csc^2 x = 1$ C. $1 + \tan^2 x = \sec^2 x$ D. $\sin^2 x + \cos^2 x = 1$
- 4. Factor the expression.

$$8\tan^2 x - 6\sec x + 3$$

- A. $(8 \sec x 5)(8 \sec x 1)$
- B. The expression cannot be factored.
- C. $(\sec x + 4)(\sec x 10)$
- D. $(4 \sec x 5)(2 \sec x + 1)$

5. Perform the multiplication and use identities to simplify.

$$(4\sin x - 4\cos x)^2$$

- A. 4 C. $16 32 \sin x \cos x$
- B. $4 8\sin x \cos x$ D. 16
- 6. Which of the following expressions is equal to $\frac{\sec x}{1 \cos^2 x} \cdot \tan^2 x$? A. $-\frac{1}{\cos^3 x}$ B. $\cos x$ C. $\frac{\sec^2 x}{\cos x}$ D. $-\frac{\tan^2 x}{\cos x \sin^2 x}$
- 7. Suppose the equation $6 \tan^2 x \tan x 70 = 0$ has two solutions between 0 and π , $x = \theta_1$ and $x = \theta_2$. What is the general solution of the equation?
 - A. $x = \theta_1, \theta_2$ B. $x = \theta_1 + 2n\pi, \theta_2 + 2n\pi$ C. $x = \theta_1 \pm \pi, \theta_2 \pm \pi$ D. $x = \theta_1 + n\pi, \theta_2 + n\pi$
- 8. Find all solutions in the interval $[0, 2\pi)$.

$$2\sin x \cos x - \cos x - 2\sin x + 1 = 0$$

A.
$$x = 0, \frac{\pi}{3}, \frac{2\pi}{3}$$

B. $x = \frac{\pi}{3}, \frac{\pi}{2}, \frac{2\pi}{3}$
C. $x = 0, \frac{\pi}{6}, \frac{5\pi}{6}$
D. $x = 2n\pi, \frac{\pi}{6} + 2n\pi, \frac{5\pi}{6} + 2n\pi$

9. Find the general solution of $4\cos x - 2\sqrt{3} = 0$.

A.
$$x = \frac{\pi}{6} + 2n\pi, \frac{5\pi}{6} + 2n\pi, \frac{7\pi}{6} + 2n\pi, \frac{11\pi}{6} + 2n\pi$$

B. $x = \frac{\pi}{6} + n\pi, \frac{11\pi}{6} + n\pi$
C. $x = \frac{\pi}{6} + 2n\pi, \frac{11\pi}{6} + 2n\pi$
D. $x = \frac{\pi}{6} + 2n\pi, \frac{5\pi}{6} + 2n\pi$

10. Find the general solution of $\tan^2 x - 7 \tan x + 6 = 0$.

A.
$$x = \frac{\pi}{4} + n\pi, \frac{3\pi}{4} + n\pi, \arctan(6) + n\pi$$

B. $x = \frac{\pi}{4} + n\pi, \arctan(6) + n\pi$
C. $x = \frac{\pi}{4} + 2n\pi, \arctan(6) + 2n\pi$
D. $x = \frac{\pi}{4} + n\pi$

THIS PAGE WAS INTENTIONALLY LEFT BLANK.

MAC 1114 - Spring 2018 - EXAM 3

Section # _____ Name _____

UF ID # _____ Signature _____

YOU MUST SHOW ALL WORK TO RECEIVE FULL CREDIT.

- 1. (5 points) Identify each statement as true or false. (Just write true or false beside each statement.)
 - (a) The sum of the measures of the angles in any triangle is 180° .

(b)
$$\frac{1}{1 + \cot^2 x} = \frac{1}{\sec^2 x} = \cos^2 x.$$

(c)
$$(\sin x + \cos x)^2 = \sin^2 x + \cos^2 x = 1.$$

- (d) The equation $\sin^2 x 9 = 0$ has no solution.
- (e) The general solution of $\tan x = 1$ is $x = \frac{\pi}{4} + 2n\pi$.
- 2. (5 points)

Solve the right triangle shown in the figure for all unknown sides and angles if b = 6 and $B = 36^{\circ}$. Keep your answers exact.

3. (5 points) Use the values $\sin(-x) = \frac{1}{\sqrt{10}}$ and $\cot x = 3$ to find the values of all six trigonometric functions. You **must** use trigonometric identities to receive credit (do not sketch a right triangle).

4. (5 points) Find the general solution of $\cos^2(10x) + 3\sin(10x) + 3 = 0$.